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ABSTRACT

In the ever-evolving digital audio landscape, Spotify, well-known

for its music and talk content, has recently introduced audiobooks

to its vast user base.While promising, this move presents significant

challenges for personalized recommendations. Unlike music and

podcasts, audiobooks, initially available for a fee, cannot be easily

skimmed before purchase, posing higher stakes for the relevance

of recommendations. Furthermore, introducing a new content type

into an existing platform confronts extreme data sparsity, as most

users are unfamiliar with this new content type. Lastly, recommend-

ing content to millions of users requires the model to react fast and

be scalable. To address these challenges, we leverage podcast and

music user preferences and introduce 2T-HGNN, a scalable recom-

mendation system comprising Heterogeneous Graph Neural Net-

works (HGNNs) and a Two Tower (2T) model. This novel approach

uncovers nuanced item relationships while ensuring low latency

and complexity. We decouple users from the HGNN graph and

propose an innovative multi-link neighbor sampler. These choices,

together with the 2T component, significantly reduce the complex-

ity of the HGNNmodel. Empirical evaluations involving millions of

users show significant improvement in the quality of personalized

recommendations, resulting in a +46% increase in new audiobooks

start rate and a +23% boost in streaming rates. Intriguingly, our

model’s impact extends beyond audiobooks, benefiting established

products like podcasts.
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1 INTRODUCTION

Audiobooks trace their roots in the ancient tradition of narrative:

oral storytelling. Despite representing just 7% of the broader book

market, their annual consumption growth rate of 20% [30] high-

lights the increasing need for personalized recommendations. Spo-

tify, a leading audio streaming platform serving hundreds of mil-

lions of users, recently added audiobooks to its extensive cata-

log [30], which already includes millions of music tracks and pod-

casts. While music and podcasts are consolidated on Spotify, most

users are unfamiliar with the new content type. Therefore, it is

challenging to develop an audiobook recommendation system that

leverages scattered user interactions and seamlessly fits into the

current platform.

When it comes to audiobooks, Spotify faces four main challenges.

First, audiobook recommendations have not been previously stud-

ied at scale. How to best model audiobook content, understand its re-

lationships with other audio content, and utilize available metadata

for recommendations remains undetermined. Second, introducing

a new content type in an existing platform faces the extreme cold-

start challenge of data scarcity. Third, although Spotify has now

included audiobooks as part of the Spotify Premium subscription1,

they were initially launched under a direct-sales model [30]. This

sale model might influence users to have lower risk tolerance, thus

creating higher stakes for the relevancy and accuracy of audiobook

recommendations. Furthermore, this model limits the volume of

explicit positive interaction signals, such as streams and purchases,

requiring the use of implicit signals to overcome interaction spar-

sity. Finally, integrating a new product into an existing platform

requires the recommendation system to be efficient, scalable, and

modular. The model has to serve hundreds of millions of users with

minimal latency and be flexible enough to accommodate evolving

user interactions and product features. Modularity is also crucial

to ensure the model’s components can be adapted and reused in

various projects and contexts (e.g., personalized recommendations

on the home page and search).

In response to these challenges, we present 2T-HGNN, a scalable

and modular graph-based recommendation system that combines

a Heterogeneous Graph Neural Network (HGNN) [4] with a Two

tower (2T) model [39], ensuring effective recommendations for all

users with only minimal latency.

1For eligible Premium users who have access to Audiobooks in selected countries [31].
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We conducted thorough data analysis and found that user pod-

cast consumption is critical to understanding user audiobook pref-

erences. Moreover, through data analysis, we confirm our intuition

that implicit signals, such as łfollowsž and łpreviewsž are bene-

ficial to predicting future user purchases and streams. Thus, our

2T-HGNN leverages implicit and explicit signals from multiple con-

tent types to perform personalized recommendations. Our model

combines the strengths of HGNN and 2T models. While the HGNN

generates comprehensive long-range item representations based

on content and user preferences, the 2T model enables scalable rec-

ommendations for all users and real-time serving with low latency

during inference. Our solution decouples the recommendation task

into an item-item component, via the HGNN, and a user-item com-

ponent, via a 2T model. This decoupling leads to a significantly

smaller and tractable graph between items only, which we call co-

listening graph. The co-listening graph and combination of a HGNN

with a 2T reduces the HGNN’s inherent complexity of retrieving

and aggregating neighboring nodes [1, 10, 16, 41, 43] and ensures

scalability. The modularity of our recommendation system offers

valuable flexibility. These modular components can be seamlessly

integrated into existing models at Spotify. Additionally, this sep-

aration allows us to make adaptations and changes to the HGNN

without direct user exposure or causing significant disruptions.

While leveraging an existing product (podcasts) to model a new

product (audiobooks) provides significant benefits, there is an in-

herent imbalance favoring the existing content type in the user

interactions. To address this issue, we introduce a balanced sampler

that optimizes the HGNN training for multiple edge types by under-

sampling the majority edge types. This graph sampler effectively

captures representations for all content types and reduces training

time by approximately 60%.

Figure 1 overviews our model and data aggregation. Based on

podcast and audiobook streaming user interactions (see Figure 1A),

we construct the co-listening graph (see Figure 1B). In this graph,

nodes represent audiobooks and podcasts and are connected by an

edge whenever at least one user streams both. Nodes incorporate

content signals from features extracted by a Large Language Model

(LLM) from audiobooks and podcast descriptions. Thus, using the

2T-HGNN we build embeddings capturing non-trivial long-range

dependencies, perform recommendations based on both content

and user preferences (see Figure 1C), simultaneously learning from

new (audiobooks) and more established (podcasts) content types.

To summarize, our key contributions are:

• To our knowledge, ours is the first work to deeply investi-

gate the design of an audiobook recommendation system

at scale. We show how consumption of podcasts, which are

usually shorter and more conversational than audiobooks,

can effectively help understand user audiobook preferences.

• Wepropose amodular architecture that seamlessly integrates

audiobook content into the existing recommendation system

platform, combining a HGNN and 2T model in one stack.

We decouple users from the graph and learn content and

user preferences on a co-listening graph. The HGNN learns

long-range, nuanced relations between items in the graph,

while the 2T model learns user taste for audiobooks for all

users, including cold-start users, in a scalable manner.

B) Co-listening graphA) User streamings

C) Content + preference 
recommendation

Audiobook

Podcast

Audiobook

Audiobook

Podcast

Audiobook

Audiobook

Audiobook

?

Delicious → Taste → Fake doctors [..] → IT

Figure 1: A) our users’ consumption patterns, which involve

audiobooks and podcasts; B) we build a co-listening graph

with nodes representing audiobooks or podcasts, and edges

connecting nodes whenever at least one user streams both;

C) Audiobook IT gets recommended because 2T-HGNN per-

forms non-trivial recommendations using 2-hop distant pat-

terns. Delicious is similar to Taste. Taste is co-listened with

Fake Doctors, which is co-listened with IT.

• To deal with the imbalance in data distribution, we first

incorporate a novel edge sampler in the HGNN and then

integrate the weak signals in the user representation when

generating user-audiobooks predictions.

• We conducted extensive offline experiments demonstrating

the efficiency and effectiveness of 2T-HGNN. It consistently

outperforms alternative methods. Furthermore, our valida-

tion using an A/B test involving millions of users resulted

in a significant 23% increase in audiobook stream rates. Re-

markably, we observed a 46% surge in the rate of people

starting new audiobooks. The model is since then in produc-

tion, exposed to all eligible audiobooks Spotify users.

2 RELATED WORK

Audiobooks recommendation. Audiobooks are part of the łlit-

erary ecologyž, along with printed books and authors [14]. Yet,

they also belong to łtalk audiož content, which includes radio and

podcasts. Talk audio content is often consumed while multi-tasking

such as during commuting, work, or chores [21]. Therefore, in terms

of consumption habits, audiobooks share more similarities with

radio, podcasts, and even music, than with books. Nonetheless, it is

currently unknown how audiobooks consumption relates to other

audio content. Here, we study whether understanding podcasts con-

sumption helps with audiobook recommendations and vice versa.

Traditional recommendation systems. Such systems are

based on collaborative filtering approaches, which rely on cap-

turing similarities among historical user-item interactions. These

methods include matrix factorization, factorization machines, and

deep neural networks [17, 20, 24, 27, 49]. However, most collabo-

rative approaches fall short when dealing with data sparsity. To
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overcome this issue, content features and additional metadata have

been successful in improving recommendations.

A popular and widely adopted approach in industry, is the 2T

model [39]. It uses separate deep neural encoders for users and items

and incorporate user and item features. 2T models have found suc-

cess in industrial recommendation systems, e.g. [37ś39] and [7].

In our work we leverage a 2T architecture to guarantee scalability

and fast serving performances at inference time.

Graph-based recommendations. Graph data structures, ex-

tensively found in online content and interaction data, provide rich

information beyond traditional pairwise labels [9]. Graph-based

approaches have proven to be effective for recommendation task,

specifically addressing challenges in cold-start scenarios and diver-

sifying recommendations [5, 34]. For instance, DeepWalk [22] uses

random walks to learn meaningful latent representations for social

networks, while TwHIN [3] employs heterogeneous information

networks to generate recommendations for social media. Although

they are efficient in learning graph structures, these techniques

are limited by their transductive nature, making them incapable of

generalizing to unseen nodes [9, 25].

GNNs for recommendations. The expressive power of Graph

Neural Networks (GNNs) is evident from their applications in both

academic [29, 32, 44] and industrial domains [11, 26, 40]. To date,

most of the current industrial GNN applications (e.g. [15, 33, 40])

focus on homogeneous graphs, where nodes and edges are of a

single type. Yet, in recommendation scenarios, handling diverse

item types or modalities is crucial, leading to the need for Het-

erogeneous GNNs (HGNNs). However, HGNNs pose challenges as

different neighbor node types have varying impacts on the node

embeddings [42]. Such imbalances require more nuanced and type-

aware sampling and aggregation strategies.

The success of (H)GNNs lies in their explicit use of neighboring

(contextual) information. However, their large-scale adoption is

limited by the complex data dependencies inherent in their neigh-

borhood aggregation. To mitigate scalability and latency issues,

practitioners have investigated content-only representations [40],

graph distillation [10, 35, 36, 45], inference speed hacks [13, 47], and

neighborhood sampling [12]. Nevertheless, most of these methods

sometimes require significant additional engineering efforts and

often a compromise between accuracy and performance.

Our work presents a modular recommendation system deployed

at scale at Spotify, which decouples users from HGNNs, thus requir-

ing a leaner graph with smaller k-hop neighborhood aggregations.

Our HGNN pairs with a 2T model, leveraging its proven scalability

and operational speed. Moreover, we design a balanced neighbor-

hood sampler, based onHamilton et al. [12] to address the imbalance

between multiple edge and node types.

3 DATA

Introducing audiobooks into Spotify, well known for music and pod-

casts, comes with challenges. Audiobooks were initially launched

using a direct-sales strategy2, requiring users to purchase an audio-

book before it could be streamed. Thus, this severely limited the

2Now audiobooks are available for eligible Premium subscribers who have access to
Audiobooks in selected countries [31].

prevalence of interaction data. Additionally, most users are unfa-

miliar with this new product, resulting in limited interactions and a

potential bias toward more popular audiobooks. In this section, we

empirically analyze the early user interaction signals on the Spotify

platform. We study the extent of our data sparsity and observe

similarities between audiobooks and podcasts in terms of content

or user preferences, hence motivating our approach.

We analyze 90 days of streaming data, comprising more than

800M+ unique streams. We focus only on podcasts and audiobooks

to reduce the complexity of our analysis, since early results showed

that audiobook consumption exhibits more similarity with podcast

consumption than with music consumption. Figure 2A shows the

distribution of streamed hours among users and audiobook titles.

Notably, approximately 25% of users account for 75% of all stream-

ing hours, and the graph illustrates that the top 20% of audiobooks

contribute to over 80% of all streamed hours.

Observation 1. Audiobook streams are mostly dominated by

power users and popular titles.

Early empirical assessments show that over 70% of initial au-

diobook consumers had previously engaged with podcasts. Con-

sequently, user interactions with podcasts could offer valuable in-

sights into understanding audiobook user preferences. We use the

Spotify podcast model currently in production to extract user em-

beddings, which reflect individual podcast preferences. From them,

we determine whether users sharing at least one streamed audio-

book exhibit greater similarity than users that streamed different

audiobooks. To investigate this, we randomly sample 10,000 pairs

(𝑢,𝑢′) of user representations in which 𝑢 streamed at least one

audiobook that 𝑢′ also streamed. Then, we also randomly sample

10,000 pairs (𝑢′′, 𝑢′′′) of user representations coupled together at

random. As shown in Figure 2B, the cosine similarity between users

with shared audiobook co-listenings exhibit a significantly higher

level of similarity than those users coupled at random.

Content information can also provide hints about user consump-

tion. For each audiobook in the catalog, we use text metadata (i.e.,

title and description) to generate low-dimensional representations

via multi-language Sentence-BERT [23]. Then, we select 10,000 dis-

tinct pairs of audiobooks in which, for each pair, at least one user

listened to both audiobooks and 10,000 pairs in which audiobooks

are randomly paired. Figure 2C shows that co-listened audiobook

pairs present a higher level of similarity than those that are ran-

domly coupled, highlighting the importance of considering content

metadata in the recommendation architecture.

Observation 2. Podcasts user tastes and content information are

informative for inferring users’ audiobook consumption patterns.

Podcast interactions help capture user taste in audiobooks, and

co-listened audiobooks have higher similarity than non-co-listened

ones. Thus, can podcast co-listenings serve as a reliable indicator

of audiobook similarity? To answer this question, we build a co-

listening graph with audiobooks and podcast nodes connected

whenever at least one user co-listens them. Then, we randomly

sample 10,000 pairs of audiobooks that are connected only through

shared podcast co-listenings. Figure 2D shows that indeed sampled
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Figure 2: A) The audiobook consumption at launch is very sparse. 25% of users account for 75% of all streaming hours. B)

Users having similar audiobook taste are more similar in podcast preferences than users selected at random. C) Audiobooks

co-listened by at least one user have similar content embeddings (LLM embeddings extracted from the title and description of

the audiobooks). D) Two audiobooks co-listened with the same podcast but not with each other have similar content embeddings.

audiobooks connected through shared podcasts exhibit a notably

stronger similarity.

Observation 3. Accounting for podcast interactions with audio-

books is essential for better understanding user preferences.

Audiobook interactions are very sparse. This sparsity can be

attributed to two main factors. First, most users are unfamiliar with

the new content type. Secondly, users encounter a paywall when

attempting to access the content, thus providing a higher barrier to

stream. This also increases the imbalance of consumption signals

between content types, since podcasts are freely accessible to users.

Users interact with audiobooks on the platform mainly from

the home and search pages. Once a user selects an audiobook of

interest, they visit the webpage and possibly follow (the updates),

preview (i.e. playing a 30s sample), or show intent to pay (i.e., a

purchase interaction without a completed purchase process). We

refer to these collected signals as weak signals.

Here we investigate whether these interactions could inform

future audiobook purchases and consumption. We analyze more

than 198 million interactions and predict future user streams from

past weak signals. We use multiple logistic regressions, one for each

type of signal. Results indicate that a higher occurrence of łfollowž

signals significantly boosts the odds of initiating a new stream

(+118%), whereas łintent to payž (+13%) and łpreviewž (+18%) sig-

nals are also positively associated with stream initiation. We refer

the reader to Appendix A for more detailed results on weak signals.

Observation 4. Incorporating weak signals into our model can

predict future streams and uncover subtle user preferences and intents.

4 MODEL

We introduce 2T-HGNN, a modular and efficient architecture for

audiobook recommendations. It is modular in nature, consisting of

both an HGNN and a 2T model. This modularity ensures that 2T-

HGNN meets Spotify’s technical requirements as outlined in Sec-

tion 1, including high performance, efficiency, and flexibility in

generating embeddings suitable for models deployed in various

contexts such as home and search pages.

2T-HGNN addresses the audiobook interactions sparsity with a

HGNN model, which is well-suited for capturing higher-order item

relationships in sparse data. Our model is built upon a co-listening

graph that connects content types whenever a user streams both.

This graph includes both podcast and content information and

incorporates co-listening interactions between podcasts as well as

between podcasts and audiobooks.

The 2T builds on the audiobook and podcast representations gen-

erated by the HGNN to serve recommendations to millions of users.

The HGNN and 2T can be seen as item-centric and user-centric

components, respectively, working together to achieve user taste

representation learning at scale. Additionally, the 2T leverages weak

signals to further account for sparsity of explicit interactions (audio-

book streams), thereby improving the quality of recommendations.

We refer to Figure 3 for the visual description of 2T-HGNN.

4.1 Heterogeneous Graph Neural Network

HGNNs enable a comprehensive understanding of multiple data

entities and relationships represented on a graph. Nevertheless,

there are multiple ways to represent content and user preferences

within a graph. Our approach employs a co-listening graph for con-

tent and user preferences, where users are not explicitly treated as

nodes. This decoupling helps circumvent the challenges associated

with HGNN neighborhood aggregations [12], potentially involving

a vast user base. This approach guarantees the scalability and effi-

ciency of our platform, enabling us to learn content representations

from millions of items and user interactions.

4.1.1 Graph construction. We build a co-listening graph where cat-

alogue items 𝑐 ∈ C (i.e. audiobooks and podcasts) constitute nodes.

An edge (𝑐 (𝑖 ) , 𝑐 ( 𝑗 ) ) ∈ E between two items is included if there is

at least one user who interacted with both items 𝑐 (𝑖 ) and 𝑐 ( 𝑗 ) . In

our heterogeneous graph, each node is associated with a specific

node type 𝑠 ∈ S = {𝑎, 𝑝}, i.e. audiobook and podcast types accord-

ingly. Further, we define a function 𝜙 : C → S mapping nodes

to node types and ⟨𝜙 (𝑐), 𝜙 (𝑐′)⟩ mapping the different relationship

of an edge 𝜖 = (𝑐, 𝑐′) connecting nodes 𝑐 and 𝑐′. Following the

results in Section 3 (Observation 2, 3), we only consider relations of

the type 𝑟 ∈ R = {(𝑎, 𝑎), (𝑎, 𝑝), (𝑝, 𝑝)}, i.e. audiobook-audiobook,
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Figure 3: Overview of our model. A) We represent audiobook-podcast relationships using a heterogeneous graph comprising

two node types: audiobook and podcast, connected to each other whenever at least one user has listened to both. Each node

has LLM embedding features extracted from the titles and descriptions of audiobooks and podcasts. We use a 2-layers HGNN

on top of this graph. B) Our 2T model recommends audiobooks to users by exploiting HGNN embeddings, user demographic

features (e.g. country and age), and historical user interactions (music, podcasts and audiobooks) represented as embeddings.

audiobook-podcast and podcast-podcast connections. By including

two content types and different types of relations, we aim to capture

latent connections between podcasts and audiobooks even while

user interactions with audiobooks are sparse.

To enhance our understanding of the catalog content, we in-

corporate node features via LLM embeddings. We use titles and

description of all podcasts and audiobooks in our catalog and the

multi-language Sentence-BERT model [23] to create these embed-

dings (see Figure 3A), which can be seen as low-dimensional repre-

sentations of the content of audiobooks and podcasts. The HGNN

learns complex patterns within our catalog’s items from this graph,

which contains information on both content and user preferences.

4.1.2 Heterogeneous GNN design & training: The HGNN model is

based on the GNN message-passing paradigm [12, 19, 46, 48]. The

heterogeneous message passing for a node 𝑐 is defined as:

h
𝑘
N(𝑐,𝑟 )

← AGGREGATE
𝑘
𝑟 ({h

𝑘−1
𝑐′ ,∀𝑐′ ∈ N (𝑐, 𝑟 )}) (1a)

h
𝑘
𝑐 ← UPDATE

𝑘 (h𝑘−1𝑐 , {h𝑘
N(𝑐,𝑟 )

}∀𝑟 ) (1b)

where 𝑘 is the layer of a 𝑙-layers HGNN, UPDATE and AGGREGATE

are differentiable functions based on 𝑐’s neighbourhood N(𝑐, 𝑟 ).

The neighborhood is defined as all nodes 𝑐′ that are connected

with the seed node 𝑐 through a relation 𝑟 , i.e. (𝑐, 𝑐′) ∈ E and

⟨𝜙 (𝑐), 𝜙 (𝑐′)⟩ = 𝑟 . In Equations (1a) and (1b), h0𝑐 = 𝑥𝑐 i.e. the node

features. The node embedding is normalized to make the train-

ing more stable and allow efficient approximate nearest neighbor

search z𝑐 = h
𝑙
𝑐/| |h

𝑙
𝑐 | | (see Section 4.3). Having 𝑙-layered HGNNs

allow them to learn from up to 𝑙-hop distant nodes (see Figure 3).

Specifically, our implementation is based on GraphSAGE [12], in

which the AGGREGATE and UPDATE operators are differentiable

and parameterized with weight matricesW. However, differently

from the original paper, we here generalize those operators to the

heterogeneous case. Specifically, we have:

AGGREGATE
𝑘
𝑟 = max

(

{𝜎
(

W𝑟h
𝑘−1
𝑐′ + b

)

,∀𝑐′ ∈ N (𝑐, 𝑟 )}
)

(2)

UPDATE
𝑘
𝑐 = 𝜎

(

W
𝑘
𝑐 h

𝑘−1
𝑐 +

∑︁

𝑟

h
𝑘
N(𝑐,𝑟 )

)

, (3)

where 𝜎 is the non-linear activation function and the AGGREGATE

operator is essentially a pooling operation across all neighbor em-

beddings which have been transformed through a neural network.

GraphSAGE defines N(𝑐, 𝑟 ) as a fixed-sized uniformly sampled

neighborhood from {𝑐 ∈ C : (𝑐, 𝑣) ∈ E} , in which the sampled

neighborhood is composed by different uniform samples at each

training iteration. This sampling ensures that the memory and

expected runtime of a single batch is limited by user-defined hy-

perparameters (i.e. the number of sampled nodes) [12].

In the HGNN, the message passing and the back-propagation

steps are repeated for multiple epochs, such that all parameters

can be adjusted according to the training loss. In particular, we

optimize the HGNN through a contrastive loss that maximizes

the inner product between the anchor and a positive sample (i.e.

connected nodes in the graph), while minimizing the inner product

between the anchor and the negative samples. Here, the negative

samples are composed by the nodes that are not connected to the

anchor by an edge. We traverse all the edges of the graph, each time

selecting a pair (z𝑎, z𝑝 ) of connected nodes HGNN embeddings and

randomly sample negatives {z𝑛 |𝑛 ∼ C} embeddings, minimizing:

L𝐻𝐺𝑁𝑁 (𝑧𝑎, 𝑧𝑝 ) = E𝑛∼C max{0, z𝑎 · z𝑛 − z𝑎 · z𝑝 + Δ} (4)

where Δ denotes the margin hyper-parameter. All nodes are sam-

pled along with their 𝑙-hop sampled neighbors (Hamilton et al. [12]).

4.1.3 Balanced multi-link neighbourhood sampler. Our co-listening

graph exhibits a significant imbalance, characterized by an abun-

dance of podcast-podcast and audiobook-podcast edges compared

to audiobook-audiobook connections. Failing to consider this imbal-

ance in our optimization process could lead our HGNN to drift away

from its main task i.e. creating high quality audiobook embeddings.

To address this imbalance, we have designed a multi-link neigh-

borhood sampler that bring balance to the number of edge types

minimized by Equation (4). It does so by reducing the number of ma-

jority edge types contained in the graph. For example, from the orig-

inal graph containing 𝑁 audiobook-audiobook and𝑀 audiobook-

podcast edges, our multi-link neighborhood sampler selects only

𝑁 audiobook-audiobook connections and 𝑁 audiobook-podcast
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connections. The sampler undersamples multiple edge types at the

same time and draws different uniform samples at each epoch to

maximize dataset coverage during training.

This approach results in improved performance and produces

more meaningful embeddings. Furthermore, this sampling strategy

ensures a predictable expected runtime for each training epoch,

which would be significantly extended to a worst case scenario

of 𝑂 ( |E |). Specifically, in our use case, the number of co-listened

podcasts would inevitably dominate the training process and con-

vergence, with limited benefits for audiobook representations.

4.2 Two Tower

2T-HGNN uses the 2T model to build user taste and new audio-

book vectors from the HGNN audiobook and podcast representa-

tions. The 2T model is comprised of two feed-forward deep neural

networks (towers), one for users and one for audiobooks (see Fig-

ure 3B). The user tower takes as input features user demographic

information as well as the user’s historical interactions with mu-

sic, audiobooks and podcasts. Notably, interactions with music are

represented by a vector that is pre-computed in-house by Spotify.

Specifically, audiobook and podcast interactions are represented as

the mean of the audiobook and podcast HGNN embeddings z̄𝑎 and

z̄𝑝 , corresponding to content the user interacted with in the last 90

days. Following Observation 4 in Section 3, we use both streams and

weak signals, such as follows and previews. The audiobook tower

uses audiobook meta-data, such as language and genre, the LLM

embedding from title and description, as well as the audiobook’s

HGNN embedding z𝑎 .

The 2T model generates two output vectors o𝑢 and o𝑎 for users

and audiobooks respectively. Then, it minimizes the following loss,

encouraging user vectors to be close to the audiobooks vectors they

have listened to, and far away from other audiobook samples:

L2𝑇 (o𝑎, o𝑢 ) = E𝑛∼B [o𝑢 · o𝑛 − o𝑢 · o𝑎] , (5)

where B are the in-batch negative audiobook samples. We weight

the loss by the inverse probability of occurrence of items in the

training dataset to prevent over-sampling popular negatives.

4.3 2T-HGNN Recommendations

2T-HGNN generates daily user and audiobook vectors, where the

audiobook vectors o𝑢 are close in dot product distance to users that

they will be recommended to. Each day, we first train the HGNN

model and pass the resulting podcast and audiobook embeddings

to the 2T model for training. Once the 2T model is trained, we gen-

erate vectors for our audiobooks in the catalog and build a Nearest

Neighbor (NN) index for online serving. Since the number of audio-

books used is relatively small, we use brute-force search to retrieve

candidates from the index. As soon as the catalogue increases, we

will use an approximate k-NN index [2] to query candidates more

efficiently. At serving time, we generate user vectors in real-time

by passing user features to our user tower and querying our k-NN

index to retrieve 𝑘 audiobook candidates for recommendation. Note

that this does not preclude us to update user embeddings in real-

time. Item vectors are pre-built and inserted into the index whereas

user vectors are generated in real-time to be highly reactive for

new coldstart users. Latency is ensured to be smaller than 100 ms.

Note that our HGNN can perform inductive inference [12], mean-

ing that it can generate embeddings for audiobooks that do not

appear in the training co-listening graph. For example, the em-

bedding for an audiobook that has never been streamed can be

generated with just the LLM features. Moreover, the modularity of

2T-HGNN allows us to train the HGNN at a difference cadence from

the 2Tmodel training. For example, one might train the HGNN once

a week to save on training costs but train the 2T model everyday

to keep the user representations fresh. We leave this exploration

and its impact on the performance to future investigations.

4.3.1 Implementation details. The HGNN models have two layers

and are based on GraphSAGE [12]. They are implemented in Py-

Torch and optimized using Adam [18]. We train all models with a

batch size 256 and learning rate of 0.001 on a single NVIDIA T4 GPU

with PyTorch Geometric [8]. Training included a maximum of 50

epochs with early stopping criteria. We saved the best-performing

model based on the validation set and stopped training after 10

successive epochs without improvement.

The 2Tmodel, implemented in Tensorflow, utilized a batch size of

128 and a learning rate of 0.001 with Adam [18]. Each tower consists

of three fully connected layers with sizes of 512, 256, and 128.

Training took place on a single machine with an Intel 16 vCPU and

128 GB memory. The model was trained for 10 epochs. Other than

GNN embeddings, the user tower uses demographic features (age

and country) as well as interaction features (audiobook, podcast,

artist) that are represented as lists of embeddings. The audiobook

tower uses metadata features (i.e. language and BISAC genre code)

and LLM embeddings of the title and description from Sentence-

BERT [23]. The output of each tower is a 128-dimensional vector.

5 EXPERIMENTS AND RESULTS

We evaluate our model performance using both offline metrics

and an online A/B test, in which audiobook recommendations are

exposed to real users of our platform.

5.1 Offline Evaluation Setup

5.1.1 Data. For the offline evaluation, we use a large scale dataset

built by collecting user interactions with podcasts and audiobooks

from the last 90 days. The dataset comprises a subset of 10M users,

3.5M+ podcasts, and 250K+ audiobooks. The evaluation is done

on a hold-out dataset comprising all the audiobook and podcast

streams of users in the last 14 days. Thus, we split data following the

gold-standard [28] of a global timelime train/hold-out split scheme,

in which users actions are split with a single time point split, with

a time window of 14 days. The train split data was further divided

in HGNN-train and HGNN-validation sets, which comprises 10%

of the train split. The HGNN training included a maximum of 50

epochs with early stopping criteria. We saved the best-performing

model based on the validation set and stopped training after 10

successive epochs without improvement.

5.1.2 Evaluation metrics. We evaluate the performance of our rec-

ommendation task through three standard metrics namely Hit-

Rate@K (HR@K), in which 𝐾 = 10, Mean Reciprocal Rank (MRR)

and catalog Coverage. We refer to Appendix A for additional details.
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5.1.3 Baselines. We evaluate our proposal on audiobook recom-

mendations, comparing it against three different baselines. First,

we employ a HGNN built upon a tripartite graph composed of

user, podcast and audiobook nodes. Each edge connects a user

with a podcast or audiobook whenever they stream it. We refer

to this model as HGNN-w-users. Next, we train a HGNN using a

co-listening graph, following Section 4.1. Note that this model can

only recommend audiobooks to warmstart users, meaning those

who have prior interactions with audiobooks. Finally, we assess the

2T model, which employs user and audiobook towers to generate

recommendations. We make user item predictions through a k-NN

index. We also conduct tests on two simpler baselines, Popular-

ity [6] and LLM-KNN. The former selects the most popular items

from the catalog within the last 90 days, while the latter constructs

user representations by averaging the audiobooks vectors the user

has interacted (streams + weak links) with in the last 90 days.

5.2 Offline Results

5.2.1 Ablation. We conduct an ablation study on our proposed

2T-HGNN model to assess the impact of its individual components.

First, removing our balanced multi-link neighborhood sampler

leads to a 6% drop inHR@10 (see Table 1A). The increase in coverage

suggests that the recommendations span more audiobooks but faces

challenges recommending the most relevant content to users.

Second, we removed weak signals from the 2T-HGNN train-

ing and inference. Table 1B shows that weak links are crucial for

effective audiobook recommendations. Not only does HR@10 per-

formance significantly decrease, but the coverage also decreases,

confirming our assumption in Section 3 (Observation 4).

Then, Table 1C-D emphasizes the significance of edges types

in the co-listening graph for delivering high-quality recommenda-

tions. Omitting the podcast-podcast edges results in a 6% decline

in HR@10. Notably, Table 1D reveals that eliminating audiobook-

audiobook co-listening edges leads to a substantial deterioration: a

11% reduction in HR@10 and a staggering 57% decline in Coverage.

Finally, we show that relying only on an homogeneous graph

drastically reduces the performance (Table 1E-F). Particularly, in

Table 1F we train the HGNN model on an homogeneous graph

composed only of podcast to podcast connections. At inference time,

we use audiobook LLM features, which are in the same latent space

as the podcast ones, to inductively predict all HGNN embeddings,

which are then used to train the 2T-HGNN model. Doing so, we

obtain marked declines: HR@10 by 16%, MRR by 12%, and Coverage

by 52%. These results highlight two critical aspects: i) modelling

heterogeneous content is essential; and ii) the two content types,

although sharing similarities, have different user preferences.

5.2.2 Audiobook recommendation. We compare the performance

of audiobook recommendations for warmstart and coldstart users

in Table 2 and Table 3. The former are those users who streamed,

previewed, showed intent to pay, or followed an audiobook, while

the latter are those who never interacted with an audiobook before.

Table 2 shows the quantitative evaluation for those users who in-

teracted at least one time with audiobooks. The popularity baseline

performs quite well, highlighting the popularity bias issue observed

in Section 3 (Observation 1). LLM-KNN excels in coverage and

MRR and shows that content-based recommendations (i.e., through

Table 1: Ablation study of our model.

Model
Warmstart users

HR@10 ↑ MRR ↑ Coverage ↑

2T-HGNN 0.353 0.218 22.3%

A) 2T-HGNN w/o multi-edge opt. 0.332 0.214 24.1%

B) 2T-HGNN w/o weak signals 0.267 0.182 17%

C) 2T-HGNN w/o PC-PC 0.333 0.210 22.3%

D) 2T-HGNN w/o AB-AB 0.312 0.198 9.4%

E) 2T-GNN (AB-AB only) 0.329 0.201 22.1%

F) 2T-GNN (PC-PC only) 0.294 0.192 10.6%

similarities of audiobook descriptions) are essential in audiobook

recommendations. However, this method struggles to suggest rele-

vant (personalized) content in the first ten items (HR@10 is 0.164).

In contrast, the HGNN model improves HR and MRR of 57% and

10% respectively over LLM-KNN, with only a marginal reduction

in coverage (-3%). This outcome suggests that HGNNs are adept at

capturing subtle nuances in user preferences, which co-listening

edges might effectively capture. Thus, it is essential to concurrently

model both content and user preferences.

Despite outperforming LLM-KNN, HGNN-w-users exhibits sub-

optimal performance in MRR and Coverage, with declines of 30%

and 53% from the HGNN result, respectively. This decline in per-

formance is likely attributed to the high sparsity of the user graph,

characterized by a substantial number of non-connected compo-

nents and a lower average degree than the co-listening graph.

Next, we compare the 2T model, which performs worse than

HGNN-w-users and HGNN in all metrics. However, it requires

significantly less training time and lower inference latency, posi-

tioning it as a competitive choice in the trade-off between online

performance and evaluation metrics.

Thus, we finally evaluate our proposed 2T-HGNNmethod, which

outperforms all models in HR@10, improving the best baseline by

36%. Although its MRR and Coverage don’t match the HGNN ones,

it balances the recommendation performance of the HGNN model

with the inference speed of the 2T-HGNN, which makes it the

perfect candidate for serving millions of users in real-time recom-

mendations. Particularly, this model improves the 2T performance

by 52%, 26% and 5% on HR@10, MRR and Coverage respectively.

We also evaluate 2T-HGNN improvements on long-tail recom-

mendations by categorizing audiobooks into five popularity tiers.

Tiers 3, 4, and 5, representing less popular content, are consid-

ered the long tail. The results show a significant improvement of

2T-HGNN, with HR@10 and MRR increasing by 118% and 102%,

respectively, at no expense of Coverage.

Table 3 confirms the consistency of our findings in HR@10 and

MRR for cold-start audiobook recommendations. This table shows

the popularity bias issue worsen as the Popularity baseline surpris-

ingly outperforms the 2T model in HR@10: the ten most popular

audiobooks are often picked up by users as their primary choice

for the first streamed audiobook (see Figure 2A). The combina-

tion of 2T+GNN continues to exhibit high performance, improving

upon the 2T model by 48% percent. However, a significant contrast
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Table 2: Audiobook recommendations for warmstart users.

Model
Warmstart users

HR@10 ↑ MRR ↑ Coverage ↑

Popularity 0.150 0.100 0.0%

LLM-KNN 0.164 0.202 54.7%

HGNN 0.258 0.224 52.8%

HGNN-w-users 0.238 0.163 25.3%

2T 0.231 0.173 21.2%

2T-HGNN 0.353 0.218 22.3%

Table 3: Audiobook recommendations for coldstart users.

Model
Coldstart users

HR@10 ↑ MRR ↑ Coverage ↑

Popularity 0.161 0.100 0.0%

HGNN-w-users 0.174 0.153 6.4%

2T 0.135 0.146 19.3%

2T-HGNN 0.200 0.156 12.0%

Table 4: Podcast recommendation performance.

Model HR@10 ↑ MRR ↑ Coverage ↑

Popularity 0.059 0.100 0.0%

2T 0.114 0.135 11.4%

2T-HGNN 0.123 0.138 20.6%

emerges among the models in terms of coverage. HGNN-w-users

achieves a mere 6.4% coverage, indicating that its recommendations

are limited to a small subset of the catalog. Although 2T-HGNN

nearly doubles this coverage to 12.0%, it is surpassed by the 2T

model, which performs 60% better in this regard. In other words,

2T-HGNN excels in making precise and accurate predictions, but

its recommendations are limited to a narrower subset of the catalog.

We do not consider this thade-off as a major issue at the moment,

but something to be eventually re-consider in the future.

5.2.3 Podcast recommendation. Integrating the representation of

audiobooks and podcasts within a single graph enables us to learn

content similarities and capture user preferences across both prod-

ucts. Leveraging this hypothesis, we incorporated audiobooks into

our existing online platform that previously featured only podcasts.

Consequently, we evaluate whether the newly proposed 2T-HGNN

model enhances podcast recommendations.

Table 4 reveals that the 2T-HGNN model outperforms the 2T

model, the current recommendation system in production, by a

margin of 7% in HR@10 and, remarkably, it increases Coverage by

80% for warm and coldstart users. While the MRR performance of

the model is on par with existing the model, Table 4 shows that

recommendations for a pre-existing product (i.e., podcasts) can be

improved by exploiting data from a distinct product (i.e., audio-

books), thereby deepening our understanding of user preferences.

Table 5: Online A/B test results.

Model Business metric

Stream rate New audiobooks start rate

2T Neutral +23.87%

2T-HGNN +25.82% +46.83%

5.3 Production A/B Experiment

We run an A/B experiment using 2T-HGNN as a candidate genera-

tor to better understand the online performance of the model. The

focus of the experiment is łAudiobook for youž, a section of the

Spotify home page that shows the top 𝑘 audiobooks personalized

recommendations. This experiment involved a sample of 11.5 mil-

lion monthly active users, who were randomly divided into three

groups. The first one was exposed to the model currently in produc-

tion, the second group received recommendations generated by a 2T

model, while the third one from the 2T-HGNNmodel. We tested the

2T model as a competitive alternative to the 2T-HGNN. All models

are trained on the same date range of data for fair comparisons.

Table 5 shows that 2T-HGNN significantly increased new au-

diobook start rate and led to a higher audiobook stream rate. In

contrast, the 2T model had a lower uplift in audiobook start rate

and did not produce a statistically significant change in stream rate.

6 CONCLUSIONS

In this workwe introduce the architecture powering personalization

of audiobook recommendations in Spotify. We propose 2T-HGNN, a

model that effectively captures users’ taste for audiobooks through

the combination of a HGNN architecture and a 2Tmodel. Our modu-

lar approach allows us to decouple complex item-item relationships

(through the HGNN) while producing scalable recommendations

for all users (through the 2T). Our results reveal a strong connection

between user preferences for audiobooks and podcasts. Notably,

modelling the two content types together improve the recommenda-

tion quality of both content types. Our online A/B test demonstrates

the success of deploying 2T-HGNN for audiobook recommenda-

tions and, more generally, its ability to power recommendations

for a new talk audio product on an existing platform. The model

is now in production and exposed to millions of users. We believe

this approach can scale across various content types leading to a

better personalized experience for online users.
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A EVALUATION METRICS

We evaluate the performance of our recommendation task on im-

plicit feedback through two standard metrics namely HR@K and

MRR. The former measures the proportion of users for whom at

least one relevant item (the one chosen by the user) has been rec-

ommended in the top 𝐾 = 10 items (see Equation (6))), while the

latter takes into account how far the item the user interacted is in

the list of recommended items (see Equation (7)). We also evalu-

ate the catalogue coverage of our recommendations, which helps

understand the long-tail recommendation issue and whether the

recommendation system can ameliorate popularity bias (see Equa-

tion (8)).
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HR@𝐾 =

∑

𝑢∈𝑈 1(the relevant item is in top K)

|𝑈 |
(6)

𝑀𝑅𝑅 =

1

|𝑈 |

∑︁

𝑢∈𝑈

1

𝑟𝑢
(7)

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
| ∪𝑢∈𝑈 Υ𝑢 |

|Υ|
(8)

where𝑈 is the set of users 𝑟𝑢 is the rank of the relevant item, Υ𝑢 is

the set of items recommended to user𝑢, and Υ is the entire catalogue.

For performance reasons, we limit the set of recommended items

to the first 100 recommended items for MRR and Coverage.

B WEAK SIGNALS CO-OCCURENCES

We here explore the concept of weak signals, which refer to user

actions performed prior to completing an audiobook purchases.

We focus on three specific actions: "follow", which allows users to

keep up with updates of an audiobook; "preview", enabling users to

listen to a 30-second sample of the audiobook; and "intent to pay",

signaling an incomplete purchase attempt. Our aim is to assess

the informativeness of these weak signals by analyzing over 198

million interactions, examining their co-occurrences and predictive

value concerning a user’s initial streaming activity.

Figure 4, how these signals co-occur, with each row representing

the distribution of a signal in conjunction with those in the columns.

Each row of the barplot highlights the proportion of interactions

involving that particular signal, offering insight into its relative

significance within the total dataset.
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Figure 4: Co-occurrence Patterns among weak signals. The

heatmap illustrates the distribution of signal co-occurrences,

with each (𝑖, 𝑗) entry representing the fraction of occurrences

of signal 𝑗 in relation to the total occurrences of signal 𝑖.

The adjacent bar plot on the right provides insights into the

relative distribution of signals within rows.

The findings indicate that interactions signaling "intent to pay"

are strongly linked with the primary stream, frequently occurring

in conjunction with a purchase. Although "follow" interactions are

less common, they do not often coincide with other signals. Simi-

larly, "preview" interactions, despite their infrequency, demonstrate

a moderate rate of co-occurrence with other types of interactions.
This analysis sheds light on the potential of weak signals as indica-

tors of user engagement and purchasing behavior.
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