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ABSTRACT

In the ever-evolving digital audio landscape, Spotify, well-known
for its music and talk content, has recently introduced audiobooks
to its vast user base. While promising, this move presents significant
challenges for personalized recommendations. Unlike music and
podcasts, audiobooks, initially available for a fee, cannot be easily
skimmed before purchase, posing higher stakes for the relevance
of recommendations. Furthermore, introducing a new content type
into an existing platform confronts extreme data sparsity, as most
users are unfamiliar with this new content type. Lastly, recommend-
ing content to millions of users requires the model to react fast and
be scalable. To address these challenges, we leverage podcast and
music user preferences and introduce 2T-HGNN, a scalable recom-
mendation system comprising Heterogeneous Graph Neural Net-
works (HGNNs) and a Two Tower (2T) model. This novel approach
uncovers nuanced item relationships while ensuring low latency
and complexity. We decouple users from the HGNN graph and
propose an innovative multi-link neighbor sampler. These choices,
together with the 2T component, significantly reduce the complex-
ity of the HGNN model. Empirical evaluations involving millions of
users show significant improvement in the quality of personalized
recommendations, resulting in a +46% increase in new audiobooks
start rate and a +23% boost in streaming rates. Intriguingly, our
model’s impact extends beyond audiobooks, benefiting established
products like podcasts.
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1 INTRODUCTION

Audiobooks trace their roots in the ancient tradition of narrative:
oral storytelling. Despite representing just 7% of the broader book
market, their annual consumption growth rate of 20% [30] high-
lights the increasing need for personalized recommendations. Spo-
tify, a leading audio streaming platform serving hundreds of mil-
lions of users, recently added audiobooks to its extensive cata-
log [30], which already includes millions of music tracks and pod-
casts. While music and podcasts are consolidated on Spotify, most
users are unfamiliar with the new content type. Therefore, it is
challenging to develop an audiobook recommendation system that
leverages scattered user interactions and seamlessly fits into the
current platform.

When it comes to audiobooks, Spotify faces four main challenges.
First, audiobook recommendations have not been previously stud-
ied at scale. How to best model audiobook content, understand its re-
lationships with other audio content, and utilize available metadata
for recommendations remains undetermined. Second, introducing
a new content type in an existing platform faces the extreme cold-
start challenge of data scarcity. Third, although Spotify has now
included audiobooks as part of the Spotify Premium subscription?,
they were initially launched under a direct-sales model [30]. This
sale model might influence users to have lower risk tolerance, thus
creating higher stakes for the relevancy and accuracy of audiobook
recommendations. Furthermore, this model limits the volume of
explicit positive interaction signals, such as streams and purchases,
requiring the use of implicit signals to overcome interaction spar-
sity. Finally, integrating a new product into an existing platform
requires the recommendation system to be efficient, scalable, and
modular. The model has to serve hundreds of millions of users with
minimal latency and be flexible enough to accommodate evolving
user interactions and product features. Modularity is also crucial
to ensure the model’s components can be adapted and reused in
various projects and contexts (e.g., personalized recommendations
on the home page and search).

In response to these challenges, we present 2T-HGNN, a scalable
and modular graph-based recommendation system that combines
a Heterogeneous Graph Neural Network (HGNN) [4] with a Two
tower (2T) model [39], ensuring effective recommendations for all
users with only minimal latency.

IFor eligible Premium users who have access to Audiobooks in selected countries [31].
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We conducted thorough data analysis and found that user pod-
cast consumption is critical to understanding user audiobook pref-
erences. Moreover, through data analysis, we confirm our intuition
that implicit signals, such as “follows” and “previews” are bene-
ficial to predicting future user purchases and streams. Thus, our
2T-HGNN leverages implicit and explicit signals from multiple con-
tent types to perform personalized recommendations. Our model
combines the strengths of HGNN and 2T models. While the HGNN
generates comprehensive long-range item representations based
on content and user preferences, the 2T model enables scalable rec-
ommendations for all users and real-time serving with low latency
during inference. Our solution decouples the recommendation task
into an item-item component, via the HGNN, and a user-item com-
ponent, via a 2T model. This decoupling leads to a significantly
smaller and tractable graph between items only, which we call co-
listening graph. The co-listening graph and combination of a HGNN
with a 2T reduces the HGNN’s inherent complexity of retrieving
and aggregating neighboring nodes [1, 10, 16, 41, 43] and ensures
scalability. The modularity of our recommendation system offers
valuable flexibility. These modular components can be seamlessly
integrated into existing models at Spotify. Additionally, this sep-
aration allows us to make adaptations and changes to the HGNN
without direct user exposure or causing significant disruptions.

While leveraging an existing product (podcasts) to model a new
product (audiobooks) provides significant benefits, there is an in-
herent imbalance favoring the existing content type in the user
interactions. To address this issue, we introduce a balanced sampler
that optimizes the HGNN training for multiple edge types by under-
sampling the majority edge types. This graph sampler effectively
captures representations for all content types and reduces training
time by approximately 60%.

Figure 1 overviews our model and data aggregation. Based on
podcast and audiobook streaming user interactions (see Figure 1A),
we construct the co-listening graph (see Figure 1B). In this graph,
nodes represent audiobooks and podcasts and are connected by an
edge whenever at least one user streams both. Nodes incorporate
content signals from features extracted by a Large Language Model
(LLM) from audiobooks and podcast descriptions. Thus, using the
2T-HGNN we build embeddings capturing non-trivial long-range
dependencies, perform recommendations based on both content
and user preferences (see Figure 1C), simultaneously learning from
new (audiobooks) and more established (podcasts) content types.

To summarize, our key contributions are:

e To our knowledge, ours is the first work to deeply investi-
gate the design of an audiobook recommendation system
at scale. We show how consumption of podcasts, which are
usually shorter and more conversational than audiobooks,
can effectively help understand user audiobook preferences.

o We propose a modular architecture that seamlessly integrates
audiobook content into the existing recommendation system
platform, combining a HGNN and 2T model in one stack.
We decouple users from the graph and learn content and
user preferences on a co-listening graph. The HGNN learns
long-range, nuanced relations between items in the graph,
while the 2T model learns user taste for audiobooks for all
users, including cold-start users, in a scalable manner.
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Figure 1: A) our users’ consumption patterns, which involve
audiobooks and podcasts; B) we build a co-listening graph
with nodes representing audiobooks or podcasts, and edges
connecting nodes whenever at least one user streams both;
C) Audiobook IT gets recommended because 2T-HGNN per-
forms non-trivial recommendations using 2-hop distant pat-
terns. Delicious is similar to Taste. Taste is co-listened with
Fake Doctors, which is co-listened with IT.

e To deal with the imbalance in data distribution, we first
incorporate a novel edge sampler in the HGNN and then
integrate the weak signals in the user representation when
generating user-audiobooks predictions.

e We conducted extensive offline experiments demonstrating
the efficiency and effectiveness of 2T-HGNN. It consistently
outperforms alternative methods. Furthermore, our valida-
tion using an A/B test involving millions of users resulted
in a significant 23% increase in audiobook stream rates. Re-
markably, we observed a 46% surge in the rate of people
starting new audiobooks. The model is since then in produc-
tion, exposed to all eligible audiobooks Spotify users.

2 RELATED WORK

Audiobooks recommendation. Audiobooks are part of the “lit-
erary ecology”, along with printed books and authors [14]. Yet,
they also belong to “talk audio” content, which includes radio and
podcasts. Talk audio content is often consumed while multi-tasking
such as during commuting, work, or chores [21]. Therefore, in terms
of consumption habits, audiobooks share more similarities with
radio, podcasts, and even music, than with books. Nonetheless, it is
currently unknown how audiobooks consumption relates to other
audio content. Here, we study whether understanding podcasts con-
sumption helps with audiobook recommendations and vice versa.

Traditional recommendation systems. Such systems are
based on collaborative filtering approaches, which rely on cap-
turing similarities among historical user-item interactions. These
methods include matrix factorization, factorization machines, and
deep neural networks [17, 20, 24, 27, 49]. However, most collabo-
rative approaches fall short when dealing with data sparsity. To
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overcome this issue, content features and additional metadata have
been successful in improving recommendations.

A popular and widely adopted approach in industry, is the 2T
model [39]. It uses separate deep neural encoders for users and items
and incorporate user and item features. 2T models have found suc-
cess in industrial recommendation systems, e.g. [37-39] and [7].
In our work we leverage a 2T architecture to guarantee scalability
and fast serving performances at inference time.

Graph-based recommendations. Graph data structures, ex-
tensively found in online content and interaction data, provide rich
information beyond traditional pairwise labels [9]. Graph-based
approaches have proven to be effective for recommendation task,
specifically addressing challenges in cold-start scenarios and diver-
sifying recommendations [5, 34]. For instance, DeepWalk [22] uses
random walks to learn meaningful latent representations for social
networks, while TWHIN [3] employs heterogeneous information
networks to generate recommendations for social media. Although
they are efficient in learning graph structures, these techniques
are limited by their transductive nature, making them incapable of
generalizing to unseen nodes [9, 25].

GNNs for recommendations. The expressive power of Graph
Neural Networks (GNNs) is evident from their applications in both
academic [29, 32, 44] and industrial domains [11, 26, 40]. To date,
most of the current industrial GNN applications (e.g. [15, 33, 40])
focus on homogeneous graphs, where nodes and edges are of a
single type. Yet, in recommendation scenarios, handling diverse
item types or modalities is crucial, leading to the need for Het-
erogeneous GNNs (HGNNs). However, HGNNs pose challenges as
different neighbor node types have varying impacts on the node
embeddings [42]. Such imbalances require more nuanced and type-
aware sampling and aggregation strategies.

The success of (H)GNNs lies in their explicit use of neighboring
(contextual) information. However, their large-scale adoption is
limited by the complex data dependencies inherent in their neigh-
borhood aggregation. To mitigate scalability and latency issues,
practitioners have investigated content-only representations [40],
graph distillation [10, 35, 36, 45], inference speed hacks [13, 47], and
neighborhood sampling [12]. Nevertheless, most of these methods
sometimes require significant additional engineering efforts and
often a compromise between accuracy and performance.

Our work presents a modular recommendation system deployed
at scale at Spotify, which decouples users from HGNNs, thus requir-
ing a leaner graph with smaller k-hop neighborhood aggregations.
Our HGNN pairs with a 2T model, leveraging its proven scalability
and operational speed. Moreover, we design a balanced neighbor-
hood sampler, based on Hamilton et al. [12] to address the imbalance
between multiple edge and node types.

3 DATA

Introducing audiobooks into Spotify, well known for music and pod-
casts, comes with challenges. Audiobooks were initially launched
using a direct-sales strategy?, requiring users to purchase an audio-
book before it could be streamed. Thus, this severely limited the

2Now audiobooks are available for eligible Premium subscribers who have access to
Audiobooks in selected countries [31].
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prevalence of interaction data. Additionally, most users are unfa-
miliar with this new product, resulting in limited interactions and a
potential bias toward more popular audiobooks. In this section, we
empirically analyze the early user interaction signals on the Spotify
platform. We study the extent of our data sparsity and observe
similarities between audiobooks and podcasts in terms of content
or user preferences, hence motivating our approach.

We analyze 90 days of streaming data, comprising more than
800M+ unique streams. We focus only on podcasts and audiobooks
to reduce the complexity of our analysis, since early results showed
that audiobook consumption exhibits more similarity with podcast
consumption than with music consumption. Figure 2A shows the
distribution of streamed hours among users and audiobook titles.
Notably, approximately 25% of users account for 75% of all stream-
ing hours, and the graph illustrates that the top 20% of audiobooks
contribute to over 80% of all streamed hours.

OBSERVATION 1. Audiobook streams are mostly dominated by
power users and popular titles.

Early empirical assessments show that over 70% of initial au-
diobook consumers had previously engaged with podcasts. Con-
sequently, user interactions with podcasts could offer valuable in-
sights into understanding audiobook user preferences. We use the
Spotify podcast model currently in production to extract user em-
beddings, which reflect individual podcast preferences. From them,
we determine whether users sharing at least one streamed audio-
book exhibit greater similarity than users that streamed different
audiobooks. To investigate this, we randomly sample 10,000 pairs
(u,u”) of user representations in which u streamed at least one
audiobook that u” also streamed. Then, we also randomly sample
10,000 pairs (u”’,u’”’) of user representations coupled together at
random. As shown in Figure 2B, the cosine similarity between users
with shared audiobook co-listenings exhibit a significantly higher
level of similarity than those users coupled at random.

Content information can also provide hints about user consump-
tion. For each audiobook in the catalog, we use text metadata (i.e.,
title and description) to generate low-dimensional representations
via multi-language Sentence-BERT [23]. Then, we select 10,000 dis-
tinct pairs of audiobooks in which, for each pair, at least one user
listened to both audiobooks and 10,000 pairs in which audiobooks
are randomly paired. Figure 2C shows that co-listened audiobook
pairs present a higher level of similarity than those that are ran-
domly coupled, highlighting the importance of considering content
metadata in the recommendation architecture.

OBSERVATION 2. Podcasts user tastes and content information are
informative for inferring users’ audiobook consumption patterns.

Podcast interactions help capture user taste in audiobooks, and
co-listened audiobooks have higher similarity than non-co-listened
ones. Thus, can podcast co-listenings serve as a reliable indicator
of audiobook similarity? To answer this question, we build a co-
listening graph with audiobooks and podcast nodes connected
whenever at least one user co-listens them. Then, we randomly
sample 10,000 pairs of audiobooks that are connected only through
shared podcast co-listenings. Figure 2D shows that indeed sampled
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Figure 2: A) The audiobook consumption at launch is very sparse. 25% of users account for 75% of all streaming hours. B)
Users having similar audiobook taste are more similar in podcast preferences than users selected at random. C) Audiobooks
co-listened by at least one user have similar content embeddings (LLM embeddings extracted from the title and description of
the audiobooks). D) Two audiobooks co-listened with the same podcast but not with each other have similar content embeddings.

audiobooks connected through shared podcasts exhibit a notably
stronger similarity.

OBSERVATION 3. Accounting for podcast interactions with audio-
books is essential for better understanding user preferences.

Audiobook interactions are very sparse. This sparsity can be
attributed to two main factors. First, most users are unfamiliar with
the new content type. Secondly, users encounter a paywall when
attempting to access the content, thus providing a higher barrier to
stream. This also increases the imbalance of consumption signals
between content types, since podcasts are freely accessible to users.

Users interact with audiobooks on the platform mainly from
the home and search pages. Once a user selects an audiobook of
interest, they visit the webpage and possibly follow (the updates),
preview (i.e. playing a 30s sample), or show intent to pay (ie., a
purchase interaction without a completed purchase process). We
refer to these collected signals as weak signals.

Here we investigate whether these interactions could inform
future audiobook purchases and consumption. We analyze more
than 198 million interactions and predict future user streams from
past weak signals. We use multiple logistic regressions, one for each
type of signal. Results indicate that a higher occurrence of “follow”
signals significantly boosts the odds of initiating a new stream
(+118%), whereas “intent to pay” (+13%) and “preview” (+18%) sig-
nals are also positively associated with stream initiation. We refer
the reader to Appendix A for more detailed results on weak signals.

OBSERVATION 4. Incorporating weak signals into our model can
predict future streams and uncover subtle user preferences and intents.

4 MODEL

We introduce 2T-HGNN, a modular and efficient architecture for
audiobook recommendations. It is modular in nature, consisting of
both an HGNN and a 2T model. This modularity ensures that 27T-
HGNN meets Spotify’s technical requirements as outlined in Sec-
tion 1, including high performance, efficiency, and flexibility in
generating embeddings suitable for models deployed in various
contexts such as home and search pages.

2T-HGNN addresses the audiobook interactions sparsity with a
HGNN model, which is well-suited for capturing higher-order item
relationships in sparse data. Our model is built upon a co-listening
graph that connects content types whenever a user streams both.
This graph includes both podcast and content information and
incorporates co-listening interactions between podcasts as well as
between podcasts and audiobooks.

The 2T builds on the audiobook and podcast representations gen-
erated by the HGNN to serve recommendations to millions of users.
The HGNN and 2T can be seen as item-centric and user-centric
components, respectively, working together to achieve user taste
representation learning at scale. Additionally, the 2T leverages weak
signals to further account for sparsity of explicit interactions (audio-
book streams), thereby improving the quality of recommendations.
We refer to Figure 3 for the visual description of 2T-HGNN.

4.1 Heterogeneous Graph Neural Network

HGNNSs enable a comprehensive understanding of multiple data
entities and relationships represented on a graph. Nevertheless,
there are multiple ways to represent content and user preferences
within a graph. Our approach employs a co-listening graph for con-
tent and user preferences, where users are not explicitly treated as
nodes. This decoupling helps circumvent the challenges associated
with HGNN neighborhood aggregations [12], potentially involving
a vast user base. This approach guarantees the scalability and effi-
ciency of our platform, enabling us to learn content representations
from millions of items and user interactions.

4.1.1  Graph construction. We build a co-listening graph where cat-
alogue items ¢ € C (i.e. audiobooks and podcasts) constitute nodes.
An edge (D, ¢y € & between two items is included if there is
at least one user who interacted with both items ¢() and ¢(/). In
our heterogeneous graph, each node is associated with a specific
node type s € S = {a, p}, i.e. audiobook and podcast types accord-
ingly. Further, we define a function ¢ : C — & mapping nodes
to node types and (¢(c), #(c¢’)) mapping the different relationship
of an edge € = (c,c’) connecting nodes ¢ and ¢’. Following the
results in Section 3 (Observation 2, 3), we only consider relations of
the type r € R = {(a,a), (a,p), (p, p)}, i.e. audiobook-audiobook,



Personalized Audiobook Recommendations at Spotify
Through Graph Neural Networks

vy / / /
; AN / /
[Title] [(TT1 VN , USER
SR ——a

A) Co-listenings HGNN PR
e 2-hops
4 -7 T T
H 7 < 1-hop ™
Audiobook s
/
[Title] D:l:‘ y // A2 /\
[Description] LLM Iy
embedding by Al
Podcast
[Description] LLM N
embedding NN O _

WWW ’24, May 13-17, 2024, Singapore

~ B) 2T

AUDIOBOOK

“Yes) DN BN 0D OO OO

— HGNN User Metadata HGNN

Music

embeddings features embeddings

Figure 3: Overview of our model. A) We represent audiobook-podcast relationships using a heterogeneous graph comprising
two node types: audiobook and podcast, connected to each other whenever at least one user has listened to both. Each node
has LLM embedding features extracted from the titles and descriptions of audiobooks and podcasts. We use a 2-layers HGNN
on top of this graph. B) Our 2T model recommends audiobooks to users by exploiting HGNN embeddings, user demographic
features (e.g. country and age), and historical user interactions (music, podcasts and audiobooks) represented as embeddings.

audiobook-podcast and podcast-podcast connections. By including
two content types and different types of relations, we aim to capture
latent connections between podcasts and audiobooks even while
user interactions with audiobooks are sparse.

To enhance our understanding of the catalog content, we in-
corporate node features via LLM embeddings. We use titles and
description of all podcasts and audiobooks in our catalog and the
multi-language Sentence-BERT model [23] to create these embed-
dings (see Figure 3A), which can be seen as low-dimensional repre-
sentations of the content of audiobooks and podcasts. The HGNN
learns complex patterns within our catalog’s items from this graph,
which contains information on both content and user preferences.

4.1.2  Heterogeneous GNN design & training: The HGNN model is
based on the GNN message-passing paradigm [12, 19, 46, 48]. The
heterogeneous message passing for a node c is defined as:

h’/‘V(C’r) « AGGREGATEK({h5"1, Ve’ e N(c,r)}))  (1a)

h¥ — UPDATEF (bE", (b5, . bvr) (1b)

where k is the layer of a [-layers HGNN, UPDATE and AGGREGATE
are differentiable functions based on ¢’s neighbourhood N (c,r).
The neighborhood is defined as all nodes ¢’ that are connected
with the seed node ¢ through a relation r, ie. (¢,¢’) € & and
($(c),¢(c")) = r. In Equations (1a) and (1b), hY = x, i.e. the node
features. The node embedding is normalized to make the train-
ing more stable and allow efficient approximate nearest neighbor
search z, = hé / ||h£|| (see Section 4.3). Having I-layered HGNNs
allow them to learn from up to [-hop distant nodes (see Figure 3).

Specifically, our implementation is based on GraphSAGE [12], in
which the AGGREGATE and UPDATE operators are differentiable
and parameterized with weight matrices W. However, differently
from the original paper, we here generalize those operators to the
heterogeneous case. Specifically, we have:

AGGREGATEF = max ({a (W,h’;,—1 + b) Ve e N(e, r)}) @)

UPDATEf = ¢ (w’gh’;‘l + bk r)) , 3)
r

where o is the non-linear activation function and the AGGREGATE
operator is essentially a pooling operation across all neighbor em-
beddings which have been transformed through a neural network.

GraphSAGE defines N (c, r) as a fixed-sized uniformly sampled
neighborhood from {c € C : (c,0) € &}, in which the sampled
neighborhood is composed by different uniform samples at each
training iteration. This sampling ensures that the memory and
expected runtime of a single batch is limited by user-defined hy-
perparameters (i.e. the number of sampled nodes) [12].

In the HGNN, the message passing and the back-propagation
steps are repeated for multiple epochs, such that all parameters
can be adjusted according to the training loss. In particular, we
optimize the HGNN through a contrastive loss that maximizes
the inner product between the anchor and a positive sample (i.e.
connected nodes in the graph), while minimizing the inner product
between the anchor and the negative samples. Here, the negative
samples are composed by the nodes that are not connected to the
anchor by an edge. We traverse all the edges of the graph, each time
selecting a pair (zgq, zp) of connected nodes HGNN embeddings and
randomly sample negatives {z,|n ~ C} embeddings, minimizing:

LuGNN (za, Zp) =E,.cmax{0,2, - Zn — 24 - Zp + A} (4)

where A denotes the margin hyper-parameter. All nodes are sam-
pled along with their I-hop sampled neighbors (Hamilton et al. [12]).

4.1.3  Balanced multi-link neighbourhood sampler. Our co-listening
graph exhibits a significant imbalance, characterized by an abun-
dance of podcast-podcast and audiobook-podcast edges compared
to audiobook-audiobook connections. Failing to consider this imbal-
ance in our optimization process could lead our HGNN to drift away
from its main task i.e. creating high quality audiobook embeddings.

To address this imbalance, we have designed a multi-link neigh-
borhood sampler that bring balance to the number of edge types
minimized by Equation (4). It does so by reducing the number of ma-
jority edge types contained in the graph. For example, from the orig-
inal graph containing N audiobook-audiobook and M audiobook-
podcast edges, our multi-link neighborhood sampler selects only
N audiobook-audiobook connections and N audiobook-podcast



WWW °24, May 13-17, 2024, Singapore

connections. The sampler undersamples multiple edge types at the
same time and draws different uniform samples at each epoch to
maximize dataset coverage during training.

This approach results in improved performance and produces
more meaningful embeddings. Furthermore, this sampling strategy
ensures a predictable expected runtime for each training epoch,
which would be significantly extended to a worst case scenario
of O(|&]). Specifically, in our use case, the number of co-listened
podcasts would inevitably dominate the training process and con-
vergence, with limited benefits for audiobook representations.

4.2 Two Tower

2T-HGNN uses the 2T model to build user taste and new audio-
book vectors from the HGNN audiobook and podcast representa-
tions. The 2T model is comprised of two feed-forward deep neural
networks (towers), one for users and one for audiobooks (see Fig-
ure 3B). The user tower takes as input features user demographic
information as well as the user’s historical interactions with mu-
sic, audiobooks and podcasts. Notably, interactions with music are
represented by a vector that is pre-computed in-house by Spotify.
Specifically, audiobook and podcast interactions are represented as
the mean of the audiobook and podcast HGNN embeddings z, and
Zp, corresponding to content the user interacted with in the last 90
days. Following Observation 4 in Section 3, we use both streams and
weak signals, such as follows and previews. The audiobook tower
uses audiobook meta-data, such as language and genre, the LLM
embedding from title and description, as well as the audiobook’s
HGNN embedding z,.

The 2T model generates two output vectors o, and o, for users
and audiobooks respectively. Then, it minimizes the following loss,
encouraging user vectors to be close to the audiobooks vectors they
have listened to, and far away from other audiobook samples:

Lo7(0g,04) = Eyog [04 - On — 0y - 04], (5

where 8 are the in-batch negative audiobook samples. We weight
the loss by the inverse probability of occurrence of items in the
training dataset to prevent over-sampling popular negatives.

4.3 2T-HGNN Recommendations

2T-HGNN generates daily user and audiobook vectors, where the
audiobook vectors oy, are close in dot product distance to users that
they will be recommended to. Each day, we first train the HGNN
model and pass the resulting podcast and audiobook embeddings
to the 2T model for training. Once the 2T model is trained, we gen-
erate vectors for our audiobooks in the catalog and build a Nearest
Neighbor (NN) index for online serving. Since the number of audio-
books used is relatively small, we use brute-force search to retrieve
candidates from the index. As soon as the catalogue increases, we
will use an approximate k-NN index [2] to query candidates more
efficiently. At serving time, we generate user vectors in real-time
by passing user features to our user tower and querying our k-NN
index to retrieve k audiobook candidates for recommendation. Note
that this does not preclude us to update user embeddings in real-
time. Item vectors are pre-built and inserted into the index whereas
user vectors are generated in real-time to be highly reactive for
new coldstart users. Latency is ensured to be smaller than 100 ms.
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Note that our HGNN can perform inductive inference [12], mean-
ing that it can generate embeddings for audiobooks that do not
appear in the training co-listening graph. For example, the em-
bedding for an audiobook that has never been streamed can be
generated with just the LLM features. Moreover, the modularity of
2T-HGNN allows us to train the HGNN at a difference cadence from
the 2T model training. For example, one might train the HGNN once
a week to save on training costs but train the 2T model everyday
to keep the user representations fresh. We leave this exploration
and its impact on the performance to future investigations.

4.3.1 Implementation details. The HGNN models have two layers
and are based on GraphSAGE [12]. They are implemented in Py-
Torch and optimized using Adam [18]. We train all models with a
batch size 256 and learning rate of 0.001 on a single NVIDIA T4 GPU
with PyTorch Geometric [8]. Training included a maximum of 50
epochs with early stopping criteria. We saved the best-performing
model based on the validation set and stopped training after 10
successive epochs without improvement.

The 2T model, implemented in Tensorflow, utilized a batch size of
128 and a learning rate of 0.001 with Adam [18]. Each tower consists
of three fully connected layers with sizes of 512, 256, and 128.
Training took place on a single machine with an Intel 16 vCPU and
128 GB memory. The model was trained for 10 epochs. Other than
GNN embeddings, the user tower uses demographic features (age
and country) as well as interaction features (audiobook, podcast,
artist) that are represented as lists of embeddings. The audiobook
tower uses metadata features (i.e. language and BISAC genre code)
and LLM embeddings of the title and description from Sentence-
BERT [23]. The output of each tower is a 128-dimensional vector.

5 EXPERIMENTS AND RESULTS

We evaluate our model performance using both offline metrics
and an online A/B test, in which audiobook recommendations are
exposed to real users of our platform.

5.1 Offline Evaluation Setup

5.1.1 Data. For the offline evaluation, we use a large scale dataset
built by collecting user interactions with podcasts and audiobooks
from the last 90 days. The dataset comprises a subset of 10M users,
3.5M+ podcasts, and 250K+ audiobooks. The evaluation is done
on a hold-out dataset comprising all the audiobook and podcast
streams of users in the last 14 days. Thus, we split data following the
gold-standard [28] of a global timelime train/hold-out split scheme,
in which users actions are split with a single time point split, with
a time window of 14 days. The train split data was further divided
in HGNN-train and HGNN-validation sets, which comprises 10%
of the train split. The HGNN training included a maximum of 50
epochs with early stopping criteria. We saved the best-performing
model based on the validation set and stopped training after 10
successive epochs without improvement.

5.1.2  Evaluation metrics. We evaluate the performance of our rec-
ommendation task through three standard metrics namely Hit-
Rate@K (HR@K), in which K = 10, Mean Reciprocal Rank (MRR)
and catalog Coverage. We refer to Appendix A for additional details.
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5.1.3 Baselines. We evaluate our proposal on audiobook recom-
mendations, comparing it against three different baselines. First,
we employ a HGNN built upon a tripartite graph composed of
user, podcast and audiobook nodes. Each edge connects a user
with a podcast or audiobook whenever they stream it. We refer
to this model as HGNN-w-users. Next, we train a HGNN using a
co-listening graph, following Section 4.1. Note that this model can
only recommend audiobooks to warmstart users, meaning those
who have prior interactions with audiobooks. Finally, we assess the
2T model, which employs user and audiobook towers to generate
recommendations. We make user item predictions through a k-NN
index. We also conduct tests on two simpler baselines, Popular-
ity [6] and LLM-KNN. The former selects the most popular items
from the catalog within the last 90 days, while the latter constructs
user representations by averaging the audiobooks vectors the user
has interacted (streams + weak links) with in the last 90 days.

5.2 Offline Results

5.2.1 Ablation. We conduct an ablation study on our proposed
2T-HGNN model to assess the impact of its individual components.
First, removing our balanced multi-link neighborhood sampler
leads to a 6% drop in HR@10 (see Table 1A). The increase in coverage
suggests that the recommendations span more audiobooks but faces
challenges recommending the most relevant content to users.

Second, we removed weak signals from the 2T-HGNN train-
ing and inference. Table 1B shows that weak links are crucial for
effective audiobook recommendations. Not only does HR@10 per-
formance significantly decrease, but the coverage also decreases,
confirming our assumption in Section 3 (Observation 4).

Then, Table 1C-D emphasizes the significance of edges types
in the co-listening graph for delivering high-quality recommenda-
tions. Omitting the podcast-podcast edges results in a 6% decline
in HR@10. Notably, Table 1D reveals that eliminating audiobook-
audiobook co-listening edges leads to a substantial deterioration: a
11% reduction in HR@10 and a staggering 57% decline in Coverage.

Finally, we show that relying only on an homogeneous graph
drastically reduces the performance (Table 1E-F). Particularly, in
Table 1F we train the HGNN model on an homogeneous graph
composed only of podcast to podcast connections. At inference time,
we use audiobook LLM features, which are in the same latent space
as the podcast ones, to inductively predict all HGNN embeddings,
which are then used to train the 2T-HGNN model. Doing so, we
obtain marked declines: HR@10 by 16%, MRR by 12%, and Coverage
by 52%. These results highlight two critical aspects: i) modelling
heterogeneous content is essential; and ii) the two content types,
although sharing similarities, have different user preferences.

5.2.2  Audiobook recommendation. We compare the performance
of audiobook recommendations for warmstart and coldstart users
in Table 2 and Table 3. The former are those users who streamed,
previewed, showed intent to pay, or followed an audiobook, while
the latter are those who never interacted with an audiobook before.

Table 2 shows the quantitative evaluation for those users who in-
teracted at least one time with audiobooks. The popularity baseline
performs quite well, highlighting the popularity bias issue observed
in Section 3 (Observation 1). LLM-KNN excels in coverage and
MRR and shows that content-based recommendations (i.e., through
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Table 1: Ablation study of our model.

‘Warmstart users

Model

HR@10 T MRR T Coverage T
2T-HGNN 0.353 0.218 22.3%
A) 2T-HGNN w/o multi-edge opt. 0.332 0.214 24.1%
B) 2T-HGNN w/o weak signals 0.267 0.182 17%
C) 2T-HGNN w/o PC-PC 0.333 0.210 22.3%
D) 2T-HGNN w/o AB-AB 0.312 0.198 9.4%
E) 2T-GNN (AB-AB only) 0.329 0.201 22.1%
F) 2T-GNN (PC-PC only) 0.294 0.192 10.6%

similarities of audiobook descriptions) are essential in audiobook
recommendations. However, this method struggles to suggest rele-
vant (personalized) content in the first ten items (HR@10 is 0.164).
In contrast, the HGNN model improves HR and MRR of 57% and
10% respectively over LLM-KNN, with only a marginal reduction
in coverage (-3%). This outcome suggests that HGNNs are adept at
capturing subtle nuances in user preferences, which co-listening
edges might effectively capture. Thus, it is essential to concurrently
model both content and user preferences.

Despite outperforming LLM-KNN, HGNN-w-users exhibits sub-
optimal performance in MRR and Coverage, with declines of 30%
and 53% from the HGNN result, respectively. This decline in per-
formance is likely attributed to the high sparsity of the user graph,
characterized by a substantial number of non-connected compo-
nents and a lower average degree than the co-listening graph.

Next, we compare the 2T model, which performs worse than
HGNN-w-users and HGNN in all metrics. However, it requires
significantly less training time and lower inference latency, posi-
tioning it as a competitive choice in the trade-off between online
performance and evaluation metrics.

Thus, we finally evaluate our proposed 2T-HGNN method, which
outperforms all models in HR@10, improving the best baseline by
36%. Although its MRR and Coverage don’t match the HGNN ones,
it balances the recommendation performance of the HGNN model
with the inference speed of the 2T-HGNN, which makes it the
perfect candidate for serving millions of users in real-time recom-
mendations. Particularly, this model improves the 2T performance
by 52%, 26% and 5% on HR@10, MRR and Coverage respectively.

We also evaluate 2T-HGNN improvements on long-tail recom-
mendations by categorizing audiobooks into five popularity tiers.
Tiers 3, 4, and 5, representing less popular content, are consid-
ered the long tail. The results show a significant improvement of
2T-HGNN, with HR@10 and MRR increasing by 118% and 102%,
respectively, at no expense of Coverage.

Table 3 confirms the consistency of our findings in HR@10 and
MRR for cold-start audiobook recommendations. This table shows
the popularity bias issue worsen as the Popularity baseline surpris-
ingly outperforms the 2T model in HR@10: the ten most popular
audiobooks are often picked up by users as their primary choice
for the first streamed audiobook (see Figure 2A). The combina-
tion of 2T+GNN continues to exhibit high performance, improving
upon the 2T model by 48% percent. However, a significant contrast
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Table 2: Audiobook recommendations for warmstart users.

De Nadai et al.

Table 5: Online A/B test results.

Warmstart users Model Business metric

Model

HR@10T MRRT Coverage T Stream rate New audiobooks start rate
Popularity 0.150  0.100 0.0% 2T Neutral +23.87%
LLM-KNN 0.164 0.202 54.7% 2T-HGNN +25.82% +46.83%
HGNN 0.258 0.224 52.8%
HGNN-w-users 0.238 0.163 25.3%
2T 0231 0173 21.2% 5.3 Production A/B Experiment
2T-HGNN 0.353  0.218 22.3% We run an A/B experiment using 2T-HGNN as a candidate genera-

Table 3: Audiobook recommendations for coldstart users.

Coldstart users

Model

HR@10T MRRT Coverage T
Popularity 0.161  0.100 0.0%
HGNN-w-users 0.174 0.153 6.4%
2T 0.135 0.146 19.3%
2T-HGNN 0.200 0.156 12.0%

Table 4: Podcast recommendation performance.

Model HR@10T MRRT Coverage T
Popularity 0.059  0.100 0.0%
2T 0.114 0.135 11.4%
2T-HGNN 0.123 0.138 20.6%

emerges among the models in terms of coverage. HGNN-w-users
achieves a mere 6.4% coverage, indicating that its recommendations
are limited to a small subset of the catalog. Although 2T-HGNN
nearly doubles this coverage to 12.0%, it is surpassed by the 2T
model, which performs 60% better in this regard. In other words,
2T-HGNN excels in making precise and accurate predictions, but
its recommendations are limited to a narrower subset of the catalog.
We do not consider this thade-off as a major issue at the moment,
but something to be eventually re-consider in the future.

5.2.3  Podcast recommendation. Integrating the representation of
audiobooks and podcasts within a single graph enables us to learn
content similarities and capture user preferences across both prod-
ucts. Leveraging this hypothesis, we incorporated audiobooks into
our existing online platform that previously featured only podcasts.
Consequently, we evaluate whether the newly proposed 2T-HGNN
model enhances podcast recommendations.

Table 4 reveals that the 2T-HGNN model outperforms the 2T
model, the current recommendation system in production, by a
margin of 7% in HR@10 and, remarkably, it increases Coverage by
80% for warm and coldstart users. While the MRR performance of
the model is on par with existing the model, Table 4 shows that
recommendations for a pre-existing product (i.e., podcasts) can be
improved by exploiting data from a distinct product (i.e., audio-
books), thereby deepening our understanding of user preferences.

tor to better understand the online performance of the model. The
focus of the experiment is “Audiobook for you”, a section of the
Spotify home page that shows the top k audiobooks personalized
recommendations. This experiment involved a sample of 11.5 mil-
lion monthly active users, who were randomly divided into three
groups. The first one was exposed to the model currently in produc-
tion, the second group received recommendations generated by a 2T
model, while the third one from the 2T-HGNN model. We tested the
2T model as a competitive alternative to the 2T-HGNN. All models
are trained on the same date range of data for fair comparisons.
Table 5 shows that 2T-HGNN significantly increased new au-
diobook start rate and led to a higher audiobook stream rate. In
contrast, the 2T model had a lower uplift in audiobook start rate
and did not produce a statistically significant change in stream rate.

6 CONCLUSIONS

In this work we introduce the architecture powering personalization
of audiobook recommendations in Spotify. We propose 2T-HGNN, a
model that effectively captures users’ taste for audiobooks through
the combination of a HGNN architecture and a 2T model. Our modu-
lar approach allows us to decouple complex item-item relationships
(through the HGNN) while producing scalable recommendations
for all users (through the 2T). Our results reveal a strong connection
between user preferences for audiobooks and podcasts. Notably,
modelling the two content types together improve the recommenda-
tion quality of both content types. Our online A/B test demonstrates
the success of deploying 2T-HGNN for audiobook recommenda-
tions and, more generally, its ability to power recommendations
for a new talk audio product on an existing platform. The model
is now in production and exposed to millions of users. We believe
this approach can scale across various content types leading to a
better personalized experience for online users.
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EVALUATION METRICS

We evaluate the performance of our recommendation task on im-
plicit feedback through two standard metrics namely HR@K and
MRR. The former measures the proportion of users for whom at
least one relevant item (the one chosen by the user) has been rec-
ommended in the top K = 10 items (see Equation (6))), while the
latter takes into account how far the item the user interacted is in
the list of recommended items (see Equation (7)). We also evalu-
ate the catalogue coverage of our recommendations, which helps
understand the long-tail recommendation issue and whether the
recommendation system can ameliorate popularity bias (see Equa-
tion (8)).
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where U is the set of users ry, is the rank of the relevant item, Y, is
the set of items recommended to user u, and Y is the entire catalogue.
For performance reasons, we limit the set of recommended items
to the first 100 recommended items for MRR and Coverage.

B WEAK SIGNALS CO-OCCURENCES

We here explore the concept of weak signals, which refer to user
actions performed prior to completing an audiobook purchases.
We focus on three specific actions: "follow", which allows users to
keep up with updates of an audiobook; "preview", enabling users to
listen to a 30-second sample of the audiobook; and "intent to pay”,
signaling an incomplete purchase attempt. Our aim is to assess
the informativeness of these weak signals by analyzing over 198
million interactions, examining their co-occurrences and predictive
value concerning a user’s initial streaming activity.

Figure 4, how these signals co-occur, with each row representing
the distribution of a signal in conjunction with those in the columns.
Each row of the barplot highlights the proportion of interactions
involving that particular signal, offering insight into its relative
significance within the total dataset.
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Figure 4: Co-occurrence Patterns among weak signals. The
heatmap illustrates the distribution of signal co-occurrences,
with each (i, j) entry representing the fraction of occurrences
of signal j in relation to the total occurrences of signal i.
The adjacent bar plot on the right provides insights into the
relative distribution of signals within rows.

The findings indicate that interactions signaling "intent to pay"
are strongly linked with the primary stream, frequently occurring
in conjunction with a purchase. Although "follow" interactions are
less common, they do not often coincide with other signals. Simi-
larly, "preview" interactions, despite their infrequency, demonstrate

a moderate rate of co-occurrence with other types of interactions.
This analysis sheds light on the potential of weak signals as indica-

tors of user engagement and purchasing behavior.
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